
ARM DS-5 Development Studio
QUICK START GUIDE

DS-5 supports all ARM® IP, from Cortex®-A, R and M
processors to the latest technologies like
big.LITTLE™, multi-clusters and ARMv8.
Crafted to give you everything you need to deal with
the complexity of modern SoCs, DS-5 lets you take
full advantage of the ARM architecture.

Use this Quick Start Guide as a reference for your
first steps with DS-5, from installation to
launching and using each tool.

Inside:
Get Started

IDE, Project Manager & Tutorials
Target Connection & Debug Units

Linux & Android Application Debug
Debug Configuration

DS-5 Debug Perspective
Debugger System Views

Instruction, Data & System Trace
Performance Analysis

Streamline Profiling Reports
Streamline Quick Reference

The Architecture for the Digital World®

2

ARM DS-5 DEVELOPMENT STUDIO

Quick Start Guide

DS-5 Downloads

Start your next project with a 30-day free trial of DS-5
Professional Edition. Download DS-5 from ds.arm.com/
downloads and use your evaluation license to explore the full
features of DS-5 Pro.

The ds.arm.com website also provides documentation,
tutorials and blogs to help you learn how to use DS-5 to its
maximum potential.

First Time Setup

Install DS-5 following the on-screen prompts and launch the
Eclipse for DS-5 application. Create a new Workspace
folder to store your projects and settings.

Welcome Screen and Licensing

Next, you’ll see the Welcome screen, which gives you a quick
way of importing the included example applications as well as
tutorials, hints and tips. To close the welcome screen, click on
the Go to Workbench link. You can get back to this screen at
any time by selecting Help - Welcome.

To license your copy of DS-5, select Help - ARM License
Manager and then click Add License. If you already have an
account at ARM.com, you can use your existing username and
password.

To upgrade or change a license, return to the ARM License
Manager and either add a license file, or enter a valid serial
number.

Environment Variables

The DS-5 installer does not modify any environment variables
in your system.

DS-5 only requires that the path environment variable
points to the <install_directory>\bin directory. This is
done automatically if you launch the tools from the Eclipse
for DS-5 or the DS-5 Command Prompt items in the
Windows Start Menu.

Running the tools from a Linux console requires you to
manually set the path environment variable.

Eclipse Perspectives and Views

A typical Eclipse workbench window contains one or more
perspectives, each of them including a set of related views,
editors, menus, and toolbars.

The main Eclipse perspectives in DS-5 are:

• C/C++: used to import and manage software projects, and
to edit source files.

• DS-5 Debug: graphical interface for the DS-5 Debugger.

DS-5 also includes other perspectives, such as PyDev for
coding debugger Jython scripts.

To open an Eclipse view, go to Window - Show View.

Reposition any view by left-clicking on its tab and dragging it.

Detach (undock) the view to drag it to a second monitor, or
right-click on its name to add it to the FastView bar.

Import Example Projects

From the C/C++ perspective, select File - Import... -
General - Existing Projects into Workspace.

Activate Select archive file and choose an example .zip from
<install_directory>\examples\example.zip.

The examples are decompressed into your workbench
directory and appear in the Project Explorer view.

Minimum System Requirements

DS-5 is supported on the x86 host platforms listed below
with at least: 2 GHz dual-core host processor, 2 GB RAM (4
GB recommended), 2 GB hard disk space.

• Windows XP Professional SP3 (32-bit)

• Windows 7 Professional SP1 (32/64-bit)

• RHEL 5 Desktop & Workstation (32/64-bit)

• RHEL 6 Workstation (32/64-bit)

• Ubuntu Desktop Edition 12.04 LTS (32/64-bit)

• Mac OS X 10.7 (DS-5 Community Edition only)

GET STARTED WITH DS-5

3

Create and Build Projects

Right-click on the Project Explorer and select New - C or
C++ Project.

Select one of the six project templates in the DS-5 project
wizard: bare-metal executable or library, Linux executable,
shared library or static library, and makefile project. This
creates a new project with working pre-defined compiler
settings.

Template-based source and header files can easily be added to
a project. Right click on the project in the Project Explorer
view and select New - Source File.

The DS-5 IDE includes powerful features to assist coding of
C/C++ and assembler files. These include syntax highlighting,
code auto-completion, and quick-jump to declaration of
variables and functions (F3 short-cut).

Find-in-files tools are grouped under the Search menu.

To make or build a project, select Project - Build.

DS-5 Example Projects

DS-5 comes complete with a range of examples to get you
started including:

• Startup examples include reset, MMU and cache
initialization code for ARM processors.

• Fireworks is a bare-metal example ported to the
Snowball, Beagle and Panda boards.

• Distribution is a complete Linux distribution to enable
driver and application development. N.B. requires
additional download.

• Gnometris is an open source Linux application similar
to the game Tetris.

• Threads is a simple multi-threaded Linux application that
illustrates how the tools handle multiple threads.

• Xaos is an example fractal application, which comes with
a pre-generated Streamline report.

• Example_library demonstrates how to create a simple
shared library in C for ARM Linux.

• Application Rewind 1 & 2 allow you to rewind
through two simple examples to locate software bugs
using reverse debugging techniques.

.c

ARM Compiler Tutorials

At ds.arm.com/tutorials, you can gain a deeper
understanding of the ARM Compiler and the optimization
techniques that it uses.

By understanding how to control optimizations such as
NEON™ autovectorization, instruction scheduling and
common subexpression elimination, you can get the most out
of your ARM processor and ensure that you have maximum
visibility during debug.

Other DS-5 tutorials available online include project
management and code editing, Streamline performance
optimization and bare metal, Linux and Android debugging.

Source code editing features in DS-5 include C/C++/asm syntax
coloring, code autocompletion, refactoring and function, class and

variable definition.

IDE, PROJECT MANAGER & TUTORIALS

4

ARM DS-5 DEVELOPMENT STUDIO

Quick Start Guide

DSTREAM: High-Performance Debug & Trace

The DSTREAM™ Debug and Trace Unit provides DS-5
Debugger with low-level debug and trace connection to
hardware targets.

DSTREAM enables DS-5 Debugger to bring up a platform and
debug bare metal software in stop-mode, with full access to
the processor and system resources.

Thanks to its large buffer DSTREAM supports long-term
off-chip trace. This enables the debug of complex, time related
software bugs and performance optimization of critical code.

ULINKpro D: Easy Debug

The ARM Keil® ULINKpro™ family can be used with DS-5
for software debug on popular devices based on the ARM
Cortex®-M, Cortex-R and Cortex-A processor series.

An ideal fit for equipment manufacturers using off-the-shelf
processor devices, the ULINKpro family enables cost efficient
run-control debug on devices ranging from MCUs to multicore
application processors.

DS-5 Configuration Database

DS-5 provides pre-configured JTAG and trace for catalog
devices. Just choose a device on the Debug Configurations
dialog to connect the debugger to one of these targets.

The default DS-5 configuration database is stored on <install_
directory>\sw\debugger\configdb. You can also add custom
configuration databases by selecting Window - Preferences
- DS-5 - Target Database.

Debugging Custom Devices

DS-5 ships with powerful tools for custom device bring-up:

• CSAT: This command line-based tool enables manual
control of the registers of a CoreSight™ Debug Access Port
and script access to the IP blocks connected to it.

• Debug Hardware Configuration: This graphical utility
reads the contents of a CoreSight ROM Table to auto-
configure the target connection. Manual configuration is also
enabled.

• ConfigDB Import: Use it to import the new debug
hardware configuration into a configuration database. This
utility outputs DTSL Python scripts (.py), which can be
used to manually modify the configuration of each IP block
with a simple scripting language.

DSTREAM
Debug Interface JTAG and Serial-Wire Debug

JTAG Speed 60 MHz

Download 2.5 MB/s

Trace Buffer 4 GB

Trace Speed 600 Mbps/pin (16-bit)

Trace Frequency 300 MHz DDR

ULINKpro D
Debug Interface JTAG and Serial-Wire Debug

JTAG Speed 50 MHz

Download 1 MB/s

Trace ETB trace support

Supported Devices Up to quad-core Cortex-A9

Learn more: ds.arm.com/ulinkpro/

Learn more: ds.arm.com/dstream/

Left: DSTREAM

Center: ULINKpro D

TARGET CONNECTION & DEBUG UNITS

5

Connecting to the Target

All you need to debug and analyze Linux applications on an
ARM processor-based target is a TCP/IP connection between
the target and the host computer.

Android™ middleware and native application development
normally uses an Android Debug Bridge (ADB)
connection over USB.

DS-5 Debugger supports both connection types and can use
them to automatically download applications into the target
file system, launch the gdbserver debug agent on the target
and connect to it.

DS-5 includes gdbserver v7.0, which enables debugging
NEON™ code and multi-threaded Android libraries.

Linux Target File System

DS-5 integrates a Remote System Explorer (RSE) to
access the Linux file system on hardware targets that support
the Secure Shell (SSH). The target must include a secure shell
daemon (sshd) and sftp-server.

RSE enables the following functionality:

• Automated software image download: DS-5 Debugger
uses RSE connections to automate the download of images
to the target, executing gdbserver and connecting to it.

• SFTP Files View: Access the target’s Linux file system using
an FTP connection. Navigate, copy, paste, drag and drop, and
edit files on the target.

• SSH Shell/Terminal View: Opens a shell or a terminal
window connected to the target in order to execute Linux
commands, for example to run an application.

Configure Remote System Explorer

Open RSE by selecting Window - Show View - Other... -
Remote Systems - Remote Systems.

Click on the New Connection button. Select Linux and click
Next.

Fill the host name box with the IP address of the target system,
or its network name if it is registered on a DNS server. Define
a name for the connection and click Next.

In the next configuration steps choose the Secure Shell
(ssh) option, then click Finish.

Fixed Virtual Platforms (FVPs)

Start bare metal and Linux software development without a
hardware target.

DS-5 includes a sample FVP, which is a fast simulation model
of a complete ARM-based SoC with a processor, system
memory, and peripherals such as keyboard, mouse, UARTs,
Ethernet, and LCD.

FVPs run at speeds comparable to the real hardware and
significantly cut your development time.

To run the example applications, download the ARM Linux
distribution. When launched, the model automatically
boots Linux and enters a state in which you can load and
debug your applications.

FVPs are configured to mount a Virtual File System
(VFS). The processor running in simulation can access files
in the host computer’s file system as if they were part of its
ARM Linux file system.

For 64-bit applications, the ARMv8 Architecture
Envelope Model (AEM) is available for download for
Linux, Android and bare-metal development.

Application Rewind - Go Back to the Bug

User-space Linux application development in DS-5 is
assisted by Application Rewind, which allows you to
“reverse debug” your software once an error has occurred.

Application Rewind runs on a lightweight debug agent on
your target, so there’s no need for JTAG or CoreSight
instruction trace; simply connect over TCP/IP.

Read more: ds.arm.com/application-rewind

LINUX & ANDROID APPLICATION DEBUG

6

ARM DS-5 DEVELOPMENT STUDIO

Quick Start Guide

Launching DS-5 Debugger

Click on the down arrow of the Debug button on the menu
bar, or right-click on the Debug Control View to open the
Debug Configurations dialog.

Right-click on DS-5 Debugger and select New, or browse
existing debug configurations. If you have imported the DS-5
examples into the Workbench, the Debug Configurations
Dialog is populated with pre-configured target connections.

Existing debug configurations can be launched by double
clicking on the Debug Control View.

Add ELF images to the configuration for source level debug.

Select Linux OS awareness or an RTOS per connection.

Use the DTSL options dialog to configure target specific
options like PTM and ETM instruction and data trace, cross-
triggers, clocks, power and ITM and STM instrumentation
trace.

Debug and Trace Services Layer (DTSL)

DTSL is the ‘glue’ between the debugger and the target.
This layer of the debugger is accessible from python scripts
which are used to configure the debug and trace settings for
individual components of the SoC and the overall topology.

These scripts are auto-generated by the debugger and can
also be modified to extend debugger functionality or work
around broken components on the SoC. Every device in the
DS-5 database has a corresponding DTSL Python script.

When used in conjunction with the optional DSTREAM
Template Development Kit (TDK) it is even possible to
make the DS-5 debugger work with new user defined IP
blocks.

Customize and control
trace options from the

DTSL configuration

Select a target from the
configuration database, or a

gdbserver connection

Browse through the
multiple tabs to configure

different IP blocks

Create a new DS-5
Debug configuration and

customize its name

In the Files tab, select an
application and check “Load
symbols” to enable source-

level debug.

DEBUG CONFIGURATION

7

DS-5 includes a powerful graphical C/C++ debugger, opened
by launching the debugger from the Debug Configurations
dialog, or by clicking Window - Open Perspective -
Other... - DS-5 Debug. Alternatively, the debugger can be
used from the host’s command line interface, or driven by a
Jython script.

Each debug view is self-contained, so there is no need to
configure any options using the Eclipse main menu. Note that
some of the debugger views, for example the Trace view, are
only enabled for JTAG target connections. Each view has an
options toolbar with further functions which can be explored.

Click to focus the system
views on a connection,

core, thread or stack frame

Type GDB-style commands
with auto-completion and

help

Control target execution
with source and assembly

level stepping

Drag & drop lines from
history view to scripts view

to create a script

Switch between C/C++
and DS-5 Debugger

perspectives

Fast View bar for
minimizing often-used

debug views

Click the down arrow for
the sub-menu, to freeze and

replicate views

Link the view to the active
connection, or to a fixed
connection or processor

Screen buffer and system
views have multiple
formatting options

Source and assembly code
views synchronized with

color coding

DS-5 DEBUG PERSPECTIVE

8

ARM DS-5 DEVELOPMENT STUDIO

Quick Start Guide

System Views

The variables view shows the value of all the application’s
variables under three groups: locals, file statics, and globals.
It also displays each variable’s type, size, value, and location
(either register or memory).

If you are interested in a defined set of variables or registers,
just type them or drag them to an expressions view. This
view also offers the flexibility to watch any C-like expression.

For bare metal development, use the register view to view
the processor, co-processor, NEON and peripheral registers
with the same format as in the target’s documentation.

The functions view lists all the functions in the target’s
application, and can be used to set breakpoints and trace
points, or navigate to the source code of a function.

Using the System Views

All the system views use color-coding to highlight content that
has recently changed, and most support drag & drop.

System views can be frozen or replicated for comparing
data between two points in time. Most views also accept C-like
expressions. For example, you can set the value of a register
with an expression such as (*my_ptr) & 0xffffff.

The way the debugger accesses the memory system is
configured via the memory map. View the memory map with
the info mem command and configure it with mem.

Breakpoints and Watchpoints

Set new breakpoints or tracepoints by double clicking on
the left column of the source code or disassembly views.

Set new watchpoints (data breakpoints) by right-clicking on
a cell of the memory view or a global variable in the variable
or expression view.

Edit the properties of breakpoints to assign:

• Condition: the breakpoint only stops the execution if the
condition (a C-like expression) is evaluated true.

• Ignore count: number of times the breakpoint is hit until
the application stops.

• Run script: the debugger performs an action (e.g log a
message) automatically when the breakpoint is hit.

• Thread and virtual machine-specific breakpoints stop
the processor only when hit from a certain thread.

Address Modifiers

You can use address modifiers to select a certain type of
memory. For instance, if you type S:0x0, the debugger reads
the memory at address 0x0 in TrustZone™ secure mode.

The following address modifiers are supported in DS-5:

• P: Physical memory (MMU disabled)

• S: TrustZone secure mode

• N: TrustZone non-secure mode

• H: Hypervisor mode

You can also debug a running target with direct access to
memory via the CoreSight Debug Access Ports. Use the
prefix APB:, AHB: or AXI: to select a particular DAP
interface to memory.

For AArch64, memory spaces can be accessed for EL1N:,
EL1S:, EL2: and EL3: exception levels.

DEBUGGER SYSTEM VIEWS

9

Instruction and Data Trace

Instruction trace enables the non-intrusive debug of random
time-related issues, which are difficult to replicate by stepping
through the code, and the performance analysis of critical
areas of software.

Data trace optionally records address and register values from
load and store instructions. Combined with the instruction
trace this gives a complete record of execution.

When trace is enabled, DS-5 begins to capture instructions
and data. Trace can be downloaded from the trace buffer
at any time, or once the capture is complete. Trace data is
synchronized with the code view.

System Trace

The Instrumentation Trace Macrocell (ITM) and System
Trace Macrocell (STM) provide high-bandwidth, low latency
“printf-style” instrumentation links. ITM and STM output is
routed to the on-chip trace bus, and can be collected by the
debugger and displayed in its Event Viewer or exported to a
text file. Using the CoreSight Global Timestamp, trace from
all these sources can be synchronized and cross referenced.

Using Tracepoints and Filters

By default, DS-5 traces everything executed by a processor
into a circular buffer.

Trace start and trace stop points enable you to restrict
trace to certain areas of the code. This is useful to optimize
the analysis of certain functions when tracing to an ETB, or to
prevent ETM FIFO overflows when the trace port is slow.

Ranges (also called filters) can be used in conjunction with
trace start and trace stop points. They enable you to select an
address range outside of which trace is always disabled.

Triggers are highlighted in the trace view and the tools can be
configured to collect trace around, before, or after the trigger.
Just check the ETM Triggers Halt Execution box in the
debug configuration menu to trace around a trigger point.

Trace Requirements

Trace typically requires a JTAG connection to devices featuring
an Embedded Trace Macrocell (ETM) or Program Trace
Macrocell (PTM). Data trace is not available on all cores. The
amount of trace recorded is limited by the size of the on-chip
Embedded Trace Buffer (ETB). If you need a larger buffer;
trace off-chip to the 4GB buffer in DSTREAM.

CoreSight Library & Snapshot Viewer

The CoreSight on-target access library enables the
software running on your ARM target to interact directly
with CoreSight devices, enabling “flight-recorder” trace. This
removes the need to attach an external debugger, allowing
you to debug software crashes in the field. DS-5 includes an
example application to illustrate the use of the CoreSight
library on a hardware target. The collected data can then be
exported for use in DS-5 Debugger.

For easy use of the CoreSight on-target access library, DS-5
Debugger contains DS-5 snapshot viewer, which enables
you to open register values, memory values and debug
symbols captured from software in the field. For instance,
this allows you to analyze trace data collected during a
crash dump.

INSTRUCTION, DATA & SYSTEM TRACE

Use the Capture Device,
Source and Ranges tabs to

configure trace

Heat map of activity and
percentage activity to
identify local hotspots

From the Trace view, synchronize other views using
timestamps, view address and values for memory

accesses, and view tracepoints and triggers embedded in
the trace list

10

ARM DS-5 DEVELOPMENT STUDIO

Quick Start Guide

ARM Streamline Performance Analyzer is a system-level
performance analysis tool for Linux and Android systems. It
uses sample-based profiling, Linux kernel trace and software
annotation techniques.

Setting up your system

To get started with Streamline you need:

• TCP/IP connection to the target, using WiFi, Ethernet or
ADB over USB (Android targets).

• Enable Linux kernel config options required by gator.

• Build the gator.ko module and gator daemon from
<install_dir>\arm\gator\ with the target’s Linux kernel.

In addition you can get more out of Streamline if you:

• Add frame pointers to your application and libraries using
the -fno-omit-frame-pointer compiler flag. This allows
Streamline to generate call-path reports.

• Annotate your code with a printf-style interface to the
gator driver, to highlight important software events.

• Add custom counters to the gator driver.

• Connect an ARM Energy Probe or NI DAQ to the
target to measure voltage and current consumption.

Launching Streamline

In Eclipse, open the ARM Streamline Data View. By default
Streamline generates profiling reports by sampling the program
counter at a constant time interval.

When you enable event-based sampling, Streamline takes
samples when an event counter reaches the threshold value
selected. For example, event-based sampling can be used to
explore which parts of the code are causing cache misses.

Streamline for RTOS

New to DS-5 is the ability to profile and optimize RTOS
and bare-metal software on Cortex-M3 and M4 processors
using Streamline.

Making use of the Data Watchpoint and Trace (DWT)
and Instrumentation Trace Macrocell (ITM), Streamline
connects through DSTREAM to collect system information
with near-zero intrusion.

Select energy measurement
tool and set shunt resistor

values

Streaming data over TCP/
IP enables long-term data

capture

Call path and stack reports
are enabled by checking call

stack unwinding

Streamline generates
source-code level reports

for selected images

The simplified
Streamline Data
view generates and
analyzes reports
with a double-click

Counter Configuration

Open the counter configuration panel to view and select
from available counters, as well as importing custom counters.
For event-based sampling, the event threshold can also be set.

PERFORMANCE ANALYSIS

Turning on event based sampling is
reflected in the Streamline report

11

Navigating a Streamline report

Streamline provides a comprehensive, intuitive report on
overall system performance, from big.LITTLE CPU clusters
to interconnect fabric, GPUs and also MCUs. Streamline
enables analysis of the interaction between software and all the
critical hardware components in complex SoCs.

Start with the Timeline pane which provides a complete time
orientated view of performance and highlights areas of interest.
Drill down to function level using the other views.

Use the tabs to navigate between the panes. Or, right-click on a
function name to highlight it in another pane.

Detailed analysis

Average performance and hot functions can be assessed
immediately in the Call Paths and Code views. Anomalies
can be identified visually from charts, with reference to the
Filmstrip or with a user defined printf-like Annotation.

Once identified, the calipers can be used to isolate a region of
the timeline and recalculate the other reports.

The process heat map can be switched to focus on kernel
scheduling or GPU activity by clicking on the green button.
CPU Wait charts reveal why the Linux kernel rescheduled a
thread, for example, due to blocking a I/O operation.

Switch process/thread heat
map between alternative

sources

Heat map of activity can be
broken down per cluster or

core in X-ray mode

Start from a high-level
analysis and drill down to

source code level

Isolate and expand on a
period of time with the

caliper tool

STREAMLINE PROFILING REPORTS

ARM DS-5 DEVELOPMENT STUDIO

Quick Start Guide

All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with the prior written permission of the copyright holder. The products described in this document are subject to continuous developments
and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied or expressed, including but not limited to implied warranties
of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide information to the reader about the product. To the extent permitted by local laws ARM shall
not be liable for any loss or damage arising from the use of any information in this document or any error or omission in such information. Copyright © 2014 ARM Ltd.

Program examples and detailed technical information are available from your distributor and our web site (ds.arm.com).

Connect an ARM
Energy Probe for energy

measurements

Use X-ray mode for per
core and per cluster thread

activity

Capture GPU activity and
data from Mali OpenGL ES

and OpenCL drivers

Filter threads to
reconfigure the heatmap

and charts

Hover over charts to use
the quick access tooltip for

data at a glance

Expand charts per core and
threads per process, and
configure expressions

Highlight a subset of
processes to focus on their

overall impact

Blue dashes show CPU
contention, red show delay

caused by IO

© ARM Ltd. | DS-5 Quick Start Guide | 02.14

Streamline Quick Reference Hints & Tips

Easily create charts for
counter ratios with the

Snippets menu

Quickly zoom to pre-
defined time levels, or use

the magnifier

